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Introduction
Major challenges of Electron-Ion Collision streaming data acquisition

EIC CDR Fig. 8.27: Diagram of the detector readout

and DAQ system [Ref. “EIC readout overview” by Fer-

nando Barbosa]
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Goal

Using machine learning for
data compression and noise
filtering.



Introduction
Time projection chamber (TPC) data

I Time projection chamber is a popular choice of

main tracking detector for both RHIC and EIC

experiments

I Using the sPHENIX TPC data model for this

study: high data rate and well modeled device

I Algorithm would be applicable for EIC tracker

and calorimeter too

I Compression: TPC data dominates the data

volume

I Noise filtering: TPC data may contain a high

amount of noise (> 50%) from the experiment

background

I High throughput to match TPC data taking

sPHENIX @ RHIC, 2023-2025
sPHENIX Technical Design Report

One of the EIC detector concepts, ∼2030
arXiv:1402.1209

https://indico.bnl.gov/event/7081/
https://arxiv.org/abs/1402.1209


Introduction
TPC data in this study

Detector model Detector simulation An example of
TPC data frame

Preparing for the toughest

In this study, we use the 10% central Au + Au collision with 170kHz pile up,
which is busiest event in sPHENIX.
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Time projection chamber zoom-in

z

48 layers, 16 each



Time projection chamber zoom-in

2304 colums

1536 columns

1152 columns

498 rows



The Amount of Data Generated by TPC

I Data format: 10-bit integer (ADC value range ∈ [0, 1023])

I Number of voxels: (azimuth× z× layer)
I Outer layer group: 2304× 498× 16 ≈ 18M;
I Middle layer group: 1536× 498× 16 ≈ 12M;
I Inner layer group: 1152× 498× 16 ≈ 9M

I Digitization frequency: 20MHz;
Frame Frequency: 80KHz

Uncompressed data rate: ∼30 Tera bits per second

Average compressed data rate via SAMPA ASIC: ∼ 2Tbps
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Lossy Compression Algorithms

There are many existing compression algorithms designed for simulation-heavy
scientific data represented by dense matrices of high-precision floating-point values.

I SZ: Error-bounded lossy compressor for HPC data
https://github.com/szcompressor/SZ

I ZFP: Compressor for integer and floating-point data stored in
multidimensional arrays
https://github.com/LLNL/zfp

I MGARD: MultiGrid adaptive reduction of data
https://github.com/CODARcode/MGARD

Problems with existing compressors

Hand-crafted and manually-tuned to suit data, missing learnable noise filtering.

https://github.com/szcompressor/SZ
https://github.com/LLNL/zfp
https://github.com/CODARcode/MGARD
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Convolutional Neural Encoder
Why we think it should work

I Convolutional neural network
(an NN architecture specialized in

processing high volume image data)

I Auto encoder
(an NN encoder learns its own encoding

rule with the help from an NN decoder)
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Convolutional Neural Encoder
Why we think it should work

I Convolutional neural network
(an NN architecture specialized in

processing high volume image data)

I Auto encoder
(an NN encoder learns its own encoding

rule with the help from an NN decoder)

Desirable properties of a neural encoder

Data-driven coding rule to optimize domain specific tasks, such as noise filtering.



Example of on-going auto-encoder study in modern data acquisition

Auto-encode evaluated for on-detector data compression for CMS HGC
[Reference to talk: https://indico.fnal.gov/event/46746/contributions/210450/]

Compact Muon Solenoid
High-Granularity Calorimeter

Proposed data flow with auto-encoder on
application-specific integrated circuit

https://indico.fnal.gov/event/46746/contributions/210450/


Convolutional Neural Encoder
A basic idea

4 ResBlocks
with conv layers

Encoder E

4 ResBlocks
with deconv layers

Decoder D

Mean squared error

Loss

Input

Conv/deConv

Activation

Normalization

Conv/deConv

Activation

Normalization

Conv/deConv

Activation

Normalization

+

ResBlock



Convolutional Neural Encoder
Problem with the basic idea
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Bicephalous Convolutional Neural Encoder
Two heads is better than one

4 ResBlocks
with conv layers

Encoder E

4 ResBlocks
with deconv layers

Sigmoid output

Clf. Decoder Dc

4 ResBlocks
with deconv layers

ReLU output

Reg. Decoder Dr

Focal CE loss
[S. Lin, et al.]

Clf. loss

Mean squared error

Reg. loss

×

I Classification decoder Dc learns to recognize truth signal

I Regression decoder Dr learns to approximate the value of truth signal

I Decompressed data = regression masked by classification

https://arxiv.org/abs/1708.02002
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Input

I a 30◦ degree sector along the
azimuth direction (192 columns for
the outer layer group)

I a half the z-direction (249 rows)

I one layer group (16 layers)

30◦

249



Results I: AE v.s. Bicephalous AE

Compression ratio is 1 : 27
(1 : 3 for SAMPA ASIC for this busiest event)
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A Missing Ingredient – Input Transform
borrowed an idea from [Y. Alanazi, et al.]

Input transform: T (x) = log(x− 64)/6, x > 64

Inverse transform: T −1(y) = 64 + exp(6y), x ∈ R
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https://arxiv.org/abs/2001.11103


Results II. Bicephalous AE with Input Transform
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Result III. Ablation Study
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Result IV-i. Comparing with Existing Compression Algorithms
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Result IV-ii. Comparing with Existing Compression Algorithms
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Result V. Metrics Summary

Table: Performance comparison

Compr. ratio↑ MSE↓ log MAE ↓ PSNR↑

MGARD 27 626.28 1.213 3.223
SZ 24 369.69 0.302 3.452
ZFP 19 219.48 0.267 3.678

AE 27 227.61 0.349 3.703
Bicephalous AE 27 230.59 0.193 3.706
Bicephalous AE w. Transform 27 218.33 0.185 3.724



Summary and Future Direction

I Test auto-encoder-based compression and noise filtering network on highest
occupancy TPC data.

I Reach 1 : 27 compression ratio.

I Future directions:
I Integrating simulation ground truth into the training to improve noise rejection.
I Working well for downstream applications (for example: clustering and tracking

efficiency and position resolution)
I Data acquisition hardware integration
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